Whatsapp Xtract V2 1 2012 05 10 2.zip is a tool that can extract WhatsApp backup messages from Andro
- curdoorswildgiloud
- Aug 20, 2023
- 3 min read
Ideally, data only need to be extracted once and should be stored in a secure and stable location for future updates of the review, regardless of whether the original review authors or a different group of authors update the review (Ip et al 2012). Standardizing and sharing data collection tools as well as data management systems among review authors working in similar topic areas can streamline systematic review production. Review authors have the opportunity to work with trialists, journal editors, funders, regulators, and other stakeholders to make study data (e.g. CSRs, IPD, and any other form of study data) publicly available, increasing the transparency of research. When legal and ethical to do so, we encourage review authors to share the data used in their systematic reviews to reduce waste and to allow verification and reanalysis because data will not have to be extracted again for future use (Mayo-Wilson et al 2018).
Whatsapp Xtract V2 1 2012 05 10 2.zip
In order to gain a deeper understanding of social media, we analyzed relevant abstracts that were downloaded from the Web of Science (WOS) database. Our search termsFootnote 1 yielded a total of 13,177 records, out of which 12,597 unique abstracts were obtained. The analysis of these records was undertaken in two steps. First, we used VOSviewer (Van Eck and Waltman 2011) to perform a co-citation analysis of first authors in the downloaded corpus. VOSviewer allows visualization of similarities in publications and authors through an examination of bibliometric networks. Furthermore, we used VOSviewer to analyze words derived from titles and abstracts. Second, we used Latent Dirichlet Allocation (LDA) (see Blei 2012) to extract key thematic areas latent in the literature on social media. Further details about these analyses and results are presented in section 3.
The fact that our search terms yielded over 12,000 abstracts suggests that scholars are investing increased interest on research issues related to social media. While an informed researcher may have a general idea of the nature of research undertaken so far, it is humanly impossible to discern the thematic structure of all scholarly documents available on social media. Recent advances in topic modeling have made this task relatively easy. Topic modeling relies on algorithms and statistical methods to elicit the topics latent in a large corpus (Blei 2012). The term topic refers to a specific and often recognizable theme defined by a cohesive set of words that have a high probability of belonging to that topic. There are several options available for topic modeling: non-negative matrix factorization (NNMF), Latent Semantic Analysis/Indexing (LSA/LSI), and Latent Dirichlet Allocation (LDA). In this study, we use LDA, arguably the most widely used topic modeling algorithm. In order to perform topic modeling on a corpus, the researcher has to specify the number of topics to be extracted. In this study, we extracted the top 100 topics reflected in the scholarship on social media. LDA starts with the assumption that each abstract in our study reflects each of these topics to varying degrees (Blei 2012). Thus, each abstract has a distribution of the desired 100 topics. The 100 topics that were extracted from our abstracts are shown in Table 2. The machine learning for language toolkit (MALLET) (McCallum 2002) was used for this purpose.
There are many facets to developing and maintaining an online community, and user participation plays an integral role in it. Ray et al. (2014) identify that user engagement increases user intention to revisit an online community. Singh et al. (2014) analyse employee blog reading behaviour and show how reader attraction and retention are influenced by textual characteristics that appeal to reader sentiments. Butler and Wang (2012) find that changing content in an online discussion community affects member dynamics and community responsiveness, both positively and negatively. An early study on participation in online communities finds that different community commitments impact behaviours differently (Bateman et al. 2011). Chau and Xu (2012) develop a framework capable of gathering, extracting, and analyzing blog information that can be applied to any organization, topic, or product/service.
2ff7e9595c
Comments